extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic5).1C23 = C2×C20⋊2Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).1C2^3 | 320,1140 |
(C2×Dic5).2C23 = C2×C20.6Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).2C2^3 | 320,1141 |
(C2×Dic5).3C23 = C42.274D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).3C2^3 | 320,1142 |
(C2×Dic5).4C23 = C2×C4.D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).4C2^3 | 320,1148 |
(C2×Dic5).5C23 = C42.276D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).5C2^3 | 320,1149 |
(C2×Dic5).6C23 = C2×C42⋊2D5 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).6C2^3 | 320,1150 |
(C2×Dic5).7C23 = C42.277D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).7C2^3 | 320,1151 |
(C2×Dic5).8C23 = C23⋊2Dic10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).8C2^3 | 320,1155 |
(C2×Dic5).9C23 = C2×C22.D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).9C2^3 | 320,1164 |
(C2×Dic5).10C23 = C23⋊3D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).10C2^3 | 320,1165 |
(C2×Dic5).11C23 = C24.30D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).11C2^3 | 320,1166 |
(C2×Dic5).12C23 = C24.31D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).12C2^3 | 320,1167 |
(C2×Dic5).13C23 = C2×C20⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).13C2^3 | 320,1169 |
(C2×Dic5).14C23 = C10.12- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).14C2^3 | 320,1172 |
(C2×Dic5).15C23 = C2×D10⋊2Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).15C2^3 | 320,1181 |
(C2×Dic5).16C23 = C10.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).16C2^3 | 320,1182 |
(C2×Dic5).17C23 = C2×C4⋊C4⋊D5 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).17C2^3 | 320,1184 |
(C2×Dic5).18C23 = C10.52- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).18C2^3 | 320,1185 |
(C2×Dic5).19C23 = C10.112+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).19C2^3 | 320,1186 |
(C2×Dic5).20C23 = C10.62- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).20C2^3 | 320,1187 |
(C2×Dic5).21C23 = C42.89D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).21C2^3 | 320,1190 |
(C2×Dic5).22C23 = C42.90D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).22C2^3 | 320,1191 |
(C2×Dic5).23C23 = C42⋊9D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).23C2^3 | 320,1197 |
(C2×Dic5).24C23 = C42.92D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).24C2^3 | 320,1198 |
(C2×Dic5).25C23 = C42.93D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).25C2^3 | 320,1200 |
(C2×Dic5).26C23 = C42.94D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).26C2^3 | 320,1201 |
(C2×Dic5).27C23 = C42.95D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).27C2^3 | 320,1202 |
(C2×Dic5).28C23 = C42.96D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).28C2^3 | 320,1203 |
(C2×Dic5).29C23 = C42.97D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).29C2^3 | 320,1204 |
(C2×Dic5).30C23 = C42.98D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).30C2^3 | 320,1205 |
(C2×Dic5).31C23 = C42.99D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).31C2^3 | 320,1206 |
(C2×Dic5).32C23 = C42.100D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).32C2^3 | 320,1207 |
(C2×Dic5).33C23 = D4⋊5Dic10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).33C2^3 | 320,1211 |
(C2×Dic5).34C23 = C42.104D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).34C2^3 | 320,1212 |
(C2×Dic5).35C23 = C42.105D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).35C2^3 | 320,1213 |
(C2×Dic5).36C23 = C42.106D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).36C2^3 | 320,1214 |
(C2×Dic5).37C23 = D4⋊6Dic10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).37C2^3 | 320,1215 |
(C2×Dic5).38C23 = C42⋊12D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).38C2^3 | 320,1219 |
(C2×Dic5).39C23 = D4×D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).39C2^3 | 320,1221 |
(C2×Dic5).40C23 = D20⋊23D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).40C2^3 | 320,1222 |
(C2×Dic5).41C23 = D20⋊24D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).41C2^3 | 320,1223 |
(C2×Dic5).42C23 = D4⋊5D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).42C2^3 | 320,1226 |
(C2×Dic5).43C23 = C42.113D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).43C2^3 | 320,1230 |
(C2×Dic5).44C23 = C42.114D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).44C2^3 | 320,1231 |
(C2×Dic5).45C23 = C42⋊17D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).45C2^3 | 320,1232 |
(C2×Dic5).46C23 = C42.115D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).46C2^3 | 320,1233 |
(C2×Dic5).47C23 = C42.116D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).47C2^3 | 320,1234 |
(C2×Dic5).48C23 = C42.118D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).48C2^3 | 320,1236 |
(C2×Dic5).49C23 = C42.119D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).49C2^3 | 320,1237 |
(C2×Dic5).50C23 = Dic10⋊10Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).50C2^3 | 320,1239 |
(C2×Dic5).51C23 = Q8⋊5Dic10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).51C2^3 | 320,1241 |
(C2×Dic5).52C23 = Q8⋊6Dic10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).52C2^3 | 320,1242 |
(C2×Dic5).53C23 = Q8×D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).53C2^3 | 320,1247 |
(C2×Dic5).54C23 = Q8⋊5D20 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).54C2^3 | 320,1248 |
(C2×Dic5).55C23 = D20⋊10Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).55C2^3 | 320,1251 |
(C2×Dic5).56C23 = C42.132D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).56C2^3 | 320,1253 |
(C2×Dic5).57C23 = C42.133D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).57C2^3 | 320,1254 |
(C2×Dic5).58C23 = C42.134D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).58C2^3 | 320,1255 |
(C2×Dic5).59C23 = C42.136D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).59C2^3 | 320,1257 |
(C2×Dic5).60C23 = C24⋊3D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).60C2^3 | 320,1261 |
(C2×Dic5).61C23 = C24.34D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).61C2^3 | 320,1264 |
(C2×Dic5).62C23 = C24.35D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).62C2^3 | 320,1265 |
(C2×Dic5).63C23 = C24⋊5D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).63C2^3 | 320,1266 |
(C2×Dic5).64C23 = C24.36D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).64C2^3 | 320,1267 |
(C2×Dic5).65C23 = Dic10⋊19D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).65C2^3 | 320,1270 |
(C2×Dic5).66C23 = C10.342+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).66C2^3 | 320,1273 |
(C2×Dic5).67C23 = C10.352+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).67C2^3 | 320,1274 |
(C2×Dic5).68C23 = C10.362+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).68C2^3 | 320,1275 |
(C2×Dic5).69C23 = D5×C4⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).69C2^3 | 320,1276 |
(C2×Dic5).70C23 = C10.372+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).70C2^3 | 320,1277 |
(C2×Dic5).71C23 = C4⋊C4⋊21D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).71C2^3 | 320,1278 |
(C2×Dic5).72C23 = C10.382+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).72C2^3 | 320,1279 |
(C2×Dic5).73C23 = C10.392+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).73C2^3 | 320,1280 |
(C2×Dic5).74C23 = C10.402+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).74C2^3 | 320,1282 |
(C2×Dic5).75C23 = D20⋊20D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).75C2^3 | 320,1284 |
(C2×Dic5).76C23 = C10.422+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).76C2^3 | 320,1285 |
(C2×Dic5).77C23 = C10.432+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).77C2^3 | 320,1286 |
(C2×Dic5).78C23 = C10.442+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).78C2^3 | 320,1287 |
(C2×Dic5).79C23 = C10.452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).79C2^3 | 320,1288 |
(C2×Dic5).80C23 = C10.472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).80C2^3 | 320,1291 |
(C2×Dic5).81C23 = C10.482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).81C2^3 | 320,1292 |
(C2×Dic5).82C23 = C10.742- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).82C2^3 | 320,1293 |
(C2×Dic5).83C23 = (Q8×Dic5)⋊C2 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).83C2^3 | 320,1294 |
(C2×Dic5).84C23 = C10.152- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).84C2^3 | 320,1297 |
(C2×Dic5).85C23 = D5×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).85C2^3 | 320,1298 |
(C2×Dic5).86C23 = C4⋊C4⋊26D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).86C2^3 | 320,1299 |
(C2×Dic5).87C23 = C10.162- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).87C2^3 | 320,1300 |
(C2×Dic5).88C23 = C10.172- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).88C2^3 | 320,1301 |
(C2×Dic5).89C23 = C10.512+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).89C2^3 | 320,1306 |
(C2×Dic5).90C23 = C10.1182+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).90C2^3 | 320,1307 |
(C2×Dic5).91C23 = C10.522+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).91C2^3 | 320,1308 |
(C2×Dic5).92C23 = C10.532+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).92C2^3 | 320,1309 |
(C2×Dic5).93C23 = C10.212- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).93C2^3 | 320,1311 |
(C2×Dic5).94C23 = C10.242- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).94C2^3 | 320,1315 |
(C2×Dic5).95C23 = C10.572+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).95C2^3 | 320,1317 |
(C2×Dic5).96C23 = C10.582+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).96C2^3 | 320,1318 |
(C2×Dic5).97C23 = C10.262- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).97C2^3 | 320,1319 |
(C2×Dic5).98C23 = C4⋊C4.197D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).98C2^3 | 320,1321 |
(C2×Dic5).99C23 = C10.802- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).99C2^3 | 320,1322 |
(C2×Dic5).100C23 = C10.812- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).100C2^3 | 320,1323 |
(C2×Dic5).101C23 = C10.1202+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).101C2^3 | 320,1325 |
(C2×Dic5).102C23 = C10.1212+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).102C2^3 | 320,1326 |
(C2×Dic5).103C23 = C10.822- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).103C2^3 | 320,1327 |
(C2×Dic5).104C23 = C4⋊C4⋊28D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).104C2^3 | 320,1328 |
(C2×Dic5).105C23 = C10.622+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).105C2^3 | 320,1331 |
(C2×Dic5).106C23 = C10.632+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).106C2^3 | 320,1332 |
(C2×Dic5).107C23 = C10.842- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).107C2^3 | 320,1334 |
(C2×Dic5).108C23 = C10.852- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).108C2^3 | 320,1337 |
(C2×Dic5).109C23 = C10.682+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).109C2^3 | 320,1338 |
(C2×Dic5).110C23 = C10.692+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).110C2^3 | 320,1339 |
(C2×Dic5).111C23 = C42.140D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).111C2^3 | 320,1344 |
(C2×Dic5).112C23 = D5×C4.4D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).112C2^3 | 320,1345 |
(C2×Dic5).113C23 = C42⋊18D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).113C2^3 | 320,1346 |
(C2×Dic5).114C23 = C42.141D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).114C2^3 | 320,1347 |
(C2×Dic5).115C23 = D20⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).115C2^3 | 320,1348 |
(C2×Dic5).116C23 = C42.144D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).116C2^3 | 320,1354 |
(C2×Dic5).117C23 = C42⋊22D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).117C2^3 | 320,1355 |
(C2×Dic5).118C23 = C42.145D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).118C2^3 | 320,1356 |
(C2×Dic5).119C23 = Dic10⋊7Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).119C2^3 | 320,1357 |
(C2×Dic5).120C23 = C42.147D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).120C2^3 | 320,1358 |
(C2×Dic5).121C23 = C42.148D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).121C2^3 | 320,1361 |
(C2×Dic5).122C23 = D20⋊7Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).122C2^3 | 320,1362 |
(C2×Dic5).123C23 = C42.152D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).123C2^3 | 320,1366 |
(C2×Dic5).124C23 = C42.153D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).124C2^3 | 320,1367 |
(C2×Dic5).125C23 = C42.157D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).125C2^3 | 320,1371 |
(C2×Dic5).126C23 = C42.158D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).126C2^3 | 320,1372 |
(C2×Dic5).127C23 = C42.159D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).127C2^3 | 320,1373 |
(C2×Dic5).128C23 = D5×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).128C2^3 | 320,1375 |
(C2×Dic5).129C23 = C42⋊24D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).129C2^3 | 320,1377 |
(C2×Dic5).130C23 = C42.162D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).130C2^3 | 320,1380 |
(C2×Dic5).131C23 = C42⋊25D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).131C2^3 | 320,1383 |
(C2×Dic5).132C23 = C42.165D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).132C2^3 | 320,1384 |
(C2×Dic5).133C23 = C42.166D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).133C2^3 | 320,1385 |
(C2×Dic5).134C23 = C42⋊26D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).134C2^3 | 320,1387 |
(C2×Dic5).135C23 = C42.238D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).135C2^3 | 320,1388 |
(C2×Dic5).136C23 = D20⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).136C2^3 | 320,1389 |
(C2×Dic5).137C23 = C42.168D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).137C2^3 | 320,1391 |
(C2×Dic5).138C23 = C42⋊28D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).138C2^3 | 320,1392 |
(C2×Dic5).139C23 = D5×C4⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).139C2^3 | 320,1395 |
(C2×Dic5).140C23 = C42.171D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).140C2^3 | 320,1396 |
(C2×Dic5).141C23 = D20⋊12D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).141C2^3 | 320,1398 |
(C2×Dic5).142C23 = D20⋊8Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).142C2^3 | 320,1399 |
(C2×Dic5).143C23 = C42.241D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).143C2^3 | 320,1400 |
(C2×Dic5).144C23 = C42.174D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).144C2^3 | 320,1401 |
(C2×Dic5).145C23 = D20⋊9Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).145C2^3 | 320,1402 |
(C2×Dic5).146C23 = C42.177D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).146C2^3 | 320,1404 |
(C2×Dic5).147C23 = C42.180D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).147C2^3 | 320,1407 |
(C2×Dic5).148C23 = C2×C20.48D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).148C2^3 | 320,1456 |
(C2×Dic5).149C23 = C2×C23.23D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).149C2^3 | 320,1461 |
(C2×Dic5).150C23 = C2×C20⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).150C2^3 | 320,1462 |
(C2×Dic5).151C23 = C24.72D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).151C2^3 | 320,1463 |
(C2×Dic5).152C23 = C2×C20⋊2D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).152C2^3 | 320,1472 |
(C2×Dic5).153C23 = D4×C5⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).153C2^3 | 320,1473 |
(C2×Dic5).154C23 = C24⋊8D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).154C2^3 | 320,1476 |
(C2×Dic5).155C23 = C24.41D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).155C2^3 | 320,1477 |
(C2×Dic5).156C23 = C2×Dic5⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).156C2^3 | 320,1482 |
(C2×Dic5).157C23 = C2×D10⋊3Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).157C2^3 | 320,1485 |
(C2×Dic5).158C23 = Q8×C5⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).158C2^3 | 320,1487 |
(C2×Dic5).159C23 = C10.442- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).159C2^3 | 320,1488 |
(C2×Dic5).160C23 = C10.1042- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).160C2^3 | 320,1496 |
(C2×Dic5).161C23 = C10.1052- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).161C2^3 | 320,1497 |
(C2×Dic5).162C23 = C10.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).162C2^3 | 320,1501 |
(C2×Dic5).163C23 = C10.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).163C2^3 | 320,1502 |
(C2×Dic5).164C23 = C10.1072- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).164C2^3 | 320,1503 |
(C2×Dic5).165C23 = C10.1472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).165C2^3 | 320,1505 |
(C2×Dic5).166C23 = C10.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).166C2^3 | 320,1506 |
(C2×Dic5).167C23 = C2×D4.10D10 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).167C2^3 | 320,1620 |
(C2×Dic5).168C23 = C10.C25 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).168C2^3 | 320,1621 |
(C2×Dic5).169C23 = D20.37C23 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).169C2^3 | 320,1623 |
(C2×Dic5).170C23 = D5×2- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).170C2^3 | 320,1624 |
(C2×Dic5).171C23 = C2×Dic5.D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).171C2^3 | 320,1098 |
(C2×Dic5).172C23 = (C4×D5).D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 4 | (C2xDic5).172C2^3 | 320,1099 |
(C2×Dic5).173C23 = (C2×D4).9F5 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).173C2^3 | 320,1115 |
(C2×Dic5).174C23 = D5⋊(C4.D4) | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 40 | 8+ | (C2xDic5).174C2^3 | 320,1116 |
(C2×Dic5).175C23 = (C2×Q8).7F5 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).175C2^3 | 320,1127 |
(C2×Dic5).176C23 = C2×C23.F5 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).176C2^3 | 320,1137 |
(C2×Dic5).177C23 = C2×D4.F5 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).177C2^3 | 320,1593 |
(C2×Dic5).178C23 = Dic5.C24 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8- | (C2xDic5).178C2^3 | 320,1594 |
(C2×Dic5).179C23 = Dic5.21C24 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8 | (C2xDic5).179C2^3 | 320,1601 |
(C2×Dic5).180C23 = Dic5.22C24 | φ: C23/C2 → C22 ⊆ Out C2×Dic5 | 80 | 8 | (C2xDic5).180C2^3 | 320,1602 |
(C2×Dic5).181C23 = C2×C4×Dic10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).181C2^3 | 320,1139 |
(C2×Dic5).182C23 = C2×C42⋊D5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).182C2^3 | 320,1144 |
(C2×Dic5).183C23 = C2×C4×D20 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).183C2^3 | 320,1145 |
(C2×Dic5).184C23 = C4×C4○D20 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).184C2^3 | 320,1146 |
(C2×Dic5).185C23 = C2×Dic5.14D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).185C2^3 | 320,1153 |
(C2×Dic5).186C23 = C2×C23.D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).186C2^3 | 320,1154 |
(C2×Dic5).187C23 = C24.24D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).187C2^3 | 320,1158 |
(C2×Dic5).188C23 = C2×D10.12D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).188C2^3 | 320,1160 |
(C2×Dic5).189C23 = C2×D10⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).189C2^3 | 320,1161 |
(C2×Dic5).190C23 = C24.27D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).190C2^3 | 320,1162 |
(C2×Dic5).191C23 = C2×Dic5.5D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).191C2^3 | 320,1163 |
(C2×Dic5).192C23 = C2×Dic5.Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).192C2^3 | 320,1170 |
(C2×Dic5).193C23 = C2×C4.Dic10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).193C2^3 | 320,1171 |
(C2×Dic5).194C23 = C2×D5×C4⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).194C2^3 | 320,1173 |
(C2×Dic5).195C23 = C2×C4⋊C4⋊7D5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).195C2^3 | 320,1174 |
(C2×Dic5).196C23 = C10.82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).196C2^3 | 320,1176 |
(C2×Dic5).197C23 = C2×D10.13D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).197C2^3 | 320,1177 |
(C2×Dic5).198C23 = C2×C4⋊D20 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).198C2^3 | 320,1178 |
(C2×Dic5).199C23 = C10.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).199C2^3 | 320,1179 |
(C2×Dic5).200C23 = C2×D10⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).200C2^3 | 320,1180 |
(C2×Dic5).201C23 = C10.102+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).201C2^3 | 320,1183 |
(C2×Dic5).202C23 = C42.87D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).202C2^3 | 320,1188 |
(C2×Dic5).203C23 = C42.88D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).203C2^3 | 320,1189 |
(C2×Dic5).204C23 = D5×C42⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).204C2^3 | 320,1192 |
(C2×Dic5).205C23 = C42⋊7D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).205C2^3 | 320,1193 |
(C2×Dic5).206C23 = C42.91D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).206C2^3 | 320,1195 |
(C2×Dic5).207C23 = C42⋊8D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).207C2^3 | 320,1196 |
(C2×Dic5).208C23 = C42⋊10D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).208C2^3 | 320,1199 |
(C2×Dic5).209C23 = D4×Dic10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).209C2^3 | 320,1209 |
(C2×Dic5).210C23 = C42.102D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).210C2^3 | 320,1210 |
(C2×Dic5).211C23 = C42⋊11D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).211C2^3 | 320,1217 |
(C2×Dic5).212C23 = C42.108D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).212C2^3 | 320,1218 |
(C2×Dic5).213C23 = C42.228D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).213C2^3 | 320,1220 |
(C2×Dic5).214C23 = Dic10⋊23D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).214C2^3 | 320,1224 |
(C2×Dic5).215C23 = Dic10⋊24D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).215C2^3 | 320,1225 |
(C2×Dic5).216C23 = D4⋊6D20 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).216C2^3 | 320,1227 |
(C2×Dic5).217C23 = C42⋊16D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).217C2^3 | 320,1228 |
(C2×Dic5).218C23 = C42.229D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).218C2^3 | 320,1229 |
(C2×Dic5).219C23 = C42.117D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).219C2^3 | 320,1235 |
(C2×Dic5).220C23 = Q8×Dic10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).220C2^3 | 320,1238 |
(C2×Dic5).221C23 = C42.122D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).221C2^3 | 320,1240 |
(C2×Dic5).222C23 = C42.125D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).222C2^3 | 320,1244 |
(C2×Dic5).223C23 = C4×Q8⋊2D5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).223C2^3 | 320,1245 |
(C2×Dic5).224C23 = C42.126D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).224C2^3 | 320,1246 |
(C2×Dic5).225C23 = Q8⋊6D20 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).225C2^3 | 320,1249 |
(C2×Dic5).226C23 = C42.232D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).226C2^3 | 320,1250 |
(C2×Dic5).227C23 = C42.131D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).227C2^3 | 320,1252 |
(C2×Dic5).228C23 = C42.135D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).228C2^3 | 320,1256 |
(C2×Dic5).229C23 = C24.56D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).229C2^3 | 320,1258 |
(C2×Dic5).230C23 = C24.32D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).230C2^3 | 320,1259 |
(C2×Dic5).231C23 = C24⋊4D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).231C2^3 | 320,1262 |
(C2×Dic5).232C23 = C24.33D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).232C2^3 | 320,1263 |
(C2×Dic5).233C23 = C20⋊(C4○D4) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).233C2^3 | 320,1268 |
(C2×Dic5).234C23 = C10.682- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).234C2^3 | 320,1269 |
(C2×Dic5).235C23 = Dic10⋊20D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).235C2^3 | 320,1271 |
(C2×Dic5).236C23 = C4⋊C4.178D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).236C2^3 | 320,1272 |
(C2×Dic5).237C23 = D20⋊19D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).237C2^3 | 320,1281 |
(C2×Dic5).238C23 = C10.732- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).238C2^3 | 320,1283 |
(C2×Dic5).239C23 = C10.462+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).239C2^3 | 320,1289 |
(C2×Dic5).240C23 = C10.1152+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).240C2^3 | 320,1290 |
(C2×Dic5).241C23 = C10.502+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).241C2^3 | 320,1295 |
(C2×Dic5).242C23 = C22⋊Q8⋊25D5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).242C2^3 | 320,1296 |
(C2×Dic5).243C23 = D20⋊21D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).243C2^3 | 320,1302 |
(C2×Dic5).244C23 = D20⋊22D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).244C2^3 | 320,1303 |
(C2×Dic5).245C23 = Dic10⋊21D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).245C2^3 | 320,1304 |
(C2×Dic5).246C23 = Dic10⋊22D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).246C2^3 | 320,1305 |
(C2×Dic5).247C23 = C10.202- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).247C2^3 | 320,1310 |
(C2×Dic5).248C23 = C10.222- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).248C2^3 | 320,1312 |
(C2×Dic5).249C23 = C10.232- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).249C2^3 | 320,1313 |
(C2×Dic5).250C23 = C10.772- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).250C2^3 | 320,1314 |
(C2×Dic5).251C23 = C10.562+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).251C2^3 | 320,1316 |
(C2×Dic5).252C23 = C10.792- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).252C2^3 | 320,1320 |
(C2×Dic5).253C23 = D5×C22.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).253C2^3 | 320,1324 |
(C2×Dic5).254C23 = C10.612+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).254C2^3 | 320,1329 |
(C2×Dic5).255C23 = C10.1222+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).255C2^3 | 320,1330 |
(C2×Dic5).256C23 = C10.642+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).256C2^3 | 320,1333 |
(C2×Dic5).257C23 = C10.662+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).257C2^3 | 320,1335 |
(C2×Dic5).258C23 = C10.672+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).258C2^3 | 320,1336 |
(C2×Dic5).259C23 = C42.233D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).259C2^3 | 320,1340 |
(C2×Dic5).260C23 = C42.137D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).260C2^3 | 320,1341 |
(C2×Dic5).261C23 = C42.138D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).261C2^3 | 320,1342 |
(C2×Dic5).262C23 = C42.139D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).262C2^3 | 320,1343 |
(C2×Dic5).263C23 = Dic10⋊10D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).263C2^3 | 320,1349 |
(C2×Dic5).264C23 = C42⋊20D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).264C2^3 | 320,1350 |
(C2×Dic5).265C23 = C42⋊21D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).265C2^3 | 320,1351 |
(C2×Dic5).266C23 = C42.143D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).266C2^3 | 320,1353 |
(C2×Dic5).267C23 = D5×C42.C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).267C2^3 | 320,1359 |
(C2×Dic5).268C23 = C42.150D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).268C2^3 | 320,1364 |
(C2×Dic5).269C23 = C42.151D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).269C2^3 | 320,1365 |
(C2×Dic5).270C23 = C42.154D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).270C2^3 | 320,1368 |
(C2×Dic5).271C23 = C42.155D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).271C2^3 | 320,1369 |
(C2×Dic5).272C23 = C42.156D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).272C2^3 | 320,1370 |
(C2×Dic5).273C23 = C42.160D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).273C2^3 | 320,1374 |
(C2×Dic5).274C23 = C42⋊23D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).274C2^3 | 320,1376 |
(C2×Dic5).275C23 = C42.161D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).275C2^3 | 320,1379 |
(C2×Dic5).276C23 = C42.163D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).276C2^3 | 320,1381 |
(C2×Dic5).277C23 = C42.164D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).277C2^3 | 320,1382 |
(C2×Dic5).278C23 = D5×C4⋊1D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).278C2^3 | 320,1386 |
(C2×Dic5).279C23 = Dic10⋊11D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).279C2^3 | 320,1390 |
(C2×Dic5).280C23 = Dic10⋊8Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).280C2^3 | 320,1393 |
(C2×Dic5).281C23 = Dic10⋊9Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).281C2^3 | 320,1394 |
(C2×Dic5).282C23 = C42.240D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).282C2^3 | 320,1397 |
(C2×Dic5).283C23 = C42.176D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).283C2^3 | 320,1403 |
(C2×Dic5).284C23 = C42.178D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).284C2^3 | 320,1405 |
(C2×Dic5).285C23 = C42.179D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).285C2^3 | 320,1406 |
(C2×Dic5).286C23 = C22×C10.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).286C2^3 | 320,1455 |
(C2×Dic5).287C23 = C22×C4⋊Dic5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).287C2^3 | 320,1457 |
(C2×Dic5).288C23 = C2×C23.21D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).288C2^3 | 320,1458 |
(C2×Dic5).289C23 = C2×C4×C5⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).289C2^3 | 320,1460 |
(C2×Dic5).290C23 = C2×D4×Dic5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).290C2^3 | 320,1467 |
(C2×Dic5).291C23 = C2×C23.18D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).291C2^3 | 320,1468 |
(C2×Dic5).292C23 = C2×C20.17D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).292C2^3 | 320,1469 |
(C2×Dic5).293C23 = C24.38D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).293C2^3 | 320,1470 |
(C2×Dic5).294C23 = C2×Dic5⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).294C2^3 | 320,1474 |
(C2×Dic5).295C23 = C2×C20⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).295C2^3 | 320,1475 |
(C2×Dic5).296C23 = C24.42D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).296C2^3 | 320,1478 |
(C2×Dic5).297C23 = C2×Q8×Dic5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).297C2^3 | 320,1483 |
(C2×Dic5).298C23 = C10.422- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).298C2^3 | 320,1484 |
(C2×Dic5).299C23 = C2×C20.23D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).299C2^3 | 320,1486 |
(C2×Dic5).300C23 = C10.452- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).300C2^3 | 320,1489 |
(C2×Dic5).301C23 = C4○D4×Dic5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).301C2^3 | 320,1498 |
(C2×Dic5).302C23 = C10.1062- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).302C2^3 | 320,1499 |
(C2×Dic5).303C23 = (C2×C20)⋊15D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).303C2^3 | 320,1500 |
(C2×Dic5).304C23 = (C2×C20)⋊17D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).304C2^3 | 320,1504 |
(C2×Dic5).305C23 = C23×Dic10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).305C2^3 | 320,1608 |
(C2×Dic5).306C23 = C22×C4○D20 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).306C2^3 | 320,1611 |
(C2×Dic5).307C23 = C22×Q8×D5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).307C2^3 | 320,1615 |
(C2×Dic5).308C23 = C2×Q8.10D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).308C2^3 | 320,1617 |
(C2×Dic5).309C23 = C2×D4⋊8D10 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).309C2^3 | 320,1619 |
(C2×Dic5).310C23 = D20.39C23 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8+ | (C2xDic5).310C2^3 | 320,1625 |
(C2×Dic5).311C23 = C4×D5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).311C2^3 | 320,1013 |
(C2×Dic5).312C23 = C42.5F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).312C2^3 | 320,1014 |
(C2×Dic5).313C23 = C4×C4.F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).313C2^3 | 320,1015 |
(C2×Dic5).314C23 = C42.6F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).314C2^3 | 320,1016 |
(C2×Dic5).315C23 = C42.11F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).315C2^3 | 320,1017 |
(C2×Dic5).316C23 = C42.12F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).316C2^3 | 320,1018 |
(C2×Dic5).317C23 = C20⋊3M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).317C2^3 | 320,1019 |
(C2×Dic5).318C23 = C42.14F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).318C2^3 | 320,1020 |
(C2×Dic5).319C23 = C42.15F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).319C2^3 | 320,1021 |
(C2×Dic5).320C23 = C42.7F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).320C2^3 | 320,1022 |
(C2×Dic5).321C23 = Dic5.C42 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).321C2^3 | 320,1029 |
(C2×Dic5).322C23 = C5⋊C8⋊8D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).322C2^3 | 320,1030 |
(C2×Dic5).323C23 = C5⋊C8⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).323C2^3 | 320,1031 |
(C2×Dic5).324C23 = D10⋊M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).324C2^3 | 320,1032 |
(C2×Dic5).325C23 = Dic5⋊M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).325C2^3 | 320,1033 |
(C2×Dic5).326C23 = C20⋊C8⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).326C2^3 | 320,1034 |
(C2×Dic5).327C23 = C23.(C2×F5) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).327C2^3 | 320,1035 |
(C2×Dic5).328C23 = D10.C42 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).328C2^3 | 320,1039 |
(C2×Dic5).329C23 = D20⋊2C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).329C2^3 | 320,1040 |
(C2×Dic5).330C23 = Dic10⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).330C2^3 | 320,1041 |
(C2×Dic5).331C23 = D10⋊2M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).331C2^3 | 320,1042 |
(C2×Dic5).332C23 = C20⋊M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).332C2^3 | 320,1043 |
(C2×Dic5).333C23 = C4⋊C4.7F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).333C2^3 | 320,1044 |
(C2×Dic5).334C23 = Dic5.M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).334C2^3 | 320,1045 |
(C2×Dic5).335C23 = C4⋊C4.9F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).335C2^3 | 320,1046 |
(C2×Dic5).336C23 = C20.M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).336C2^3 | 320,1047 |
(C2×Dic5).337C23 = C2×C4×C5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).337C2^3 | 320,1084 |
(C2×Dic5).338C23 = C2×C20⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).338C2^3 | 320,1085 |
(C2×Dic5).339C23 = Dic5.12M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).339C2^3 | 320,1086 |
(C2×Dic5).340C23 = C2×C10.C42 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).340C2^3 | 320,1087 |
(C2×Dic5).341C23 = C4×C22.F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).341C2^3 | 320,1088 |
(C2×Dic5).342C23 = C2×D10⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).342C2^3 | 320,1089 |
(C2×Dic5).343C23 = C2×Dic5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).343C2^3 | 320,1090 |
(C2×Dic5).344C23 = D10.11M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).344C2^3 | 320,1091 |
(C2×Dic5).345C23 = C20.34M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).345C2^3 | 320,1092 |
(C2×Dic5).346C23 = D10⋊9M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).346C2^3 | 320,1093 |
(C2×Dic5).347C23 = D10⋊10M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).347C2^3 | 320,1094 |
(C2×Dic5).348C23 = Dic5.13M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).348C2^3 | 320,1095 |
(C2×Dic5).349C23 = C20⋊8M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).349C2^3 | 320,1096 |
(C2×Dic5).350C23 = C20.30M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).350C2^3 | 320,1097 |
(C2×Dic5).351C23 = D4×C5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).351C2^3 | 320,1110 |
(C2×Dic5).352C23 = C5⋊C8⋊7D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).352C2^3 | 320,1111 |
(C2×Dic5).353C23 = C20⋊2M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).353C2^3 | 320,1112 |
(C2×Dic5).354C23 = (C2×D4).7F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).354C2^3 | 320,1113 |
(C2×Dic5).355C23 = (C2×D4).8F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).355C2^3 | 320,1114 |
(C2×Dic5).356C23 = Q8×C5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).356C2^3 | 320,1124 |
(C2×Dic5).357C23 = (C2×Q8).5F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).357C2^3 | 320,1125 |
(C2×Dic5).358C23 = C20.6M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).358C2^3 | 320,1126 |
(C2×Dic5).359C23 = C2×C23.2F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).359C2^3 | 320,1135 |
(C2×Dic5).360C23 = C24.4F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).360C2^3 | 320,1136 |
(C2×Dic5).361C23 = C22×D5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).361C2^3 | 320,1587 |
(C2×Dic5).362C23 = C22×C4.F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).362C2^3 | 320,1588 |
(C2×Dic5).363C23 = C2×D5⋊M4(2) | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | | (C2xDic5).363C2^3 | 320,1589 |
(C2×Dic5).364C23 = C2×Q8.F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).364C2^3 | 320,1597 |
(C2×Dic5).365C23 = Dic5.20C24 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 80 | 8+ | (C2xDic5).365C2^3 | 320,1598 |
(C2×Dic5).366C23 = C23×C5⋊C8 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 320 | | (C2xDic5).366C2^3 | 320,1605 |
(C2×Dic5).367C23 = C22×C22.F5 | φ: C23/C22 → C2 ⊆ Out C2×Dic5 | 160 | | (C2xDic5).367C2^3 | 320,1606 |
(C2×Dic5).368C23 = D5×C2×C42 | φ: trivial image | 160 | | (C2xDic5).368C2^3 | 320,1143 |
(C2×Dic5).369C23 = C2×C23.11D10 | φ: trivial image | 160 | | (C2xDic5).369C2^3 | 320,1152 |
(C2×Dic5).370C23 = C2×Dic5⋊4D4 | φ: trivial image | 160 | | (C2xDic5).370C2^3 | 320,1157 |
(C2×Dic5).371C23 = C2×Dic5⋊3Q8 | φ: trivial image | 320 | | (C2xDic5).371C2^3 | 320,1168 |
(C2×Dic5).372C23 = C2×D20⋊8C4 | φ: trivial image | 160 | | (C2xDic5).372C2^3 | 320,1175 |
(C2×Dic5).373C23 = C42.188D10 | φ: trivial image | 160 | | (C2xDic5).373C2^3 | 320,1194 |
(C2×Dic5).374C23 = C4×D4⋊2D5 | φ: trivial image | 160 | | (C2xDic5).374C2^3 | 320,1208 |
(C2×Dic5).375C23 = C4×D4×D5 | φ: trivial image | 80 | | (C2xDic5).375C2^3 | 320,1216 |
(C2×Dic5).376C23 = C4×Q8×D5 | φ: trivial image | 160 | | (C2xDic5).376C2^3 | 320,1243 |
(C2×Dic5).377C23 = C42.234D10 | φ: trivial image | 160 | | (C2xDic5).377C2^3 | 320,1352 |
(C2×Dic5).378C23 = C42.236D10 | φ: trivial image | 160 | | (C2xDic5).378C2^3 | 320,1360 |
(C2×Dic5).379C23 = C42.237D10 | φ: trivial image | 160 | | (C2xDic5).379C2^3 | 320,1363 |
(C2×Dic5).380C23 = C42.189D10 | φ: trivial image | 160 | | (C2xDic5).380C2^3 | 320,1378 |
(C2×Dic5).381C23 = C22×C4×Dic5 | φ: trivial image | 320 | | (C2xDic5).381C2^3 | 320,1454 |
(C2×Dic5).382C23 = C22×Q8⋊2D5 | φ: trivial image | 160 | | (C2xDic5).382C2^3 | 320,1616 |